Mitochondrial dysfunction in neurodegenerative disorders.
نویسندگان
چکیده
There is compelling evidence for the direct involvement of mitochondria in certain neurodegenerative disorders, such as Morbus Parkinson, FRDA (Friedreich's ataxia), ALS (amyotrophic lateral sclerosis), and temporal lobe epilepsy with Ammon's horn sclerosis. This evidence includes the direct genetic evidence of pathogenic mutations in mitochondrial proteins in inherited Parkinsonism {such as PARK6, with mutations in the mitochondrial PINK1 [PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced kinase 1]} and in FRDA (with mutations in the mitochondrial protein frataxin). Moreover, there is functional evidence of impairment of the respiratory chain in sporadic forms of Parkinsonism, ALS, and temporal lobe epilepsy with Ammon's horn sclerosis. In the sporadic forms of the above-mentioned neurodegenerative disorders, increased oxidative stress appears to be the crucial initiating event that affects respiratory chain function and starts a vicious cycle finally leading to neuronal cell death. We suggest that the critical factor that determines the survival of neurons in neurodegenerative disorders is the degree of mitochondrial DNA damage and the maintenance of an appropriate mitochondrial DNA copy number. Evidence for a depletion of intact copies of the mitochondrial genome has been provided in all above-mentioned neurodegenerative disorders including ALS and temporal lobe epilepsy with Ammon's horn sclerosis. In the present study, we critically review the available data.
منابع مشابه
Relationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملGemfibrozil protect PC12 cells through modulation of Estradiol receptors against oxidative stress
Introduction: Neurodegenerative diseases are progressive disorders that could impair neuronal functions and structures. Oxidative stress and mitochondrial dysfunction are involved in the etiology of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and etc. Gemfibrozil is used as a therapeutic drug for hyperlipidemia. It has been shown that gemfibrozil is n...
متن کاملGenus Boswellia as a new candidate for neurodegenerative disorders
Neurodegenerative diseases, characterized by progressive loss of neurons, share common mechanisms such as apoptotic cell death, mitochondrial dysfunction, inflammation, and oxidative stress. Genus Boswellia is a genus in the Burseraceae family. It comprises several species traditionally used for treatment of chronic inflammatory diseases, cerebral edema, chronic pain syndrome, gastrointestinal d...
متن کاملThe Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders
The mitochondrial calcium uniporter (MCU)-a calcium uniporter on the inner membrane of mitochondria-controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is obs...
متن کاملProjection of Need for Pathogenetic Testing for Mitochondrial Dysfunction in Autistic Spectrum Disorder (ASD) Children of India
Background Autistic Spectrum Disorder (ASD) is a neurodevelopmental disorder. There is a large quantity of evidence which point towards a positive correlation between Autism and Mitochondrial disorders (MD). In addition to that, several published reports, indicate that people with neurological disorders exhibit pathological signs of mitochondrial disorders and vice versa. Screening for underly...
متن کاملRepeated Administration of Mercury Accelerates Progression of Multiple Sclerosis through Mitochondrial Dysfunction
Multiple Sclerosis (MS) is a neurodegenerative and autoimmune disease that it’s molecular etiology and factors involving in its progression remains unknown. In this study for evaluation effect of mercuric on progression of MS we investigated the additive effect of mercuric sulfide on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model of MS in C57BL/6 mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 35 Pt 5 شماره
صفحات -
تاریخ انتشار 2007